Prediction of transmission line overloading using intelligent technique

نویسندگان

  • Savita Sharma
  • Laxmi Srivastava
چکیده

With the worldwide deregulation of power system, fast line flows or real power (MW) security assessment has become a challenging task for which fast and accurate prediction of line flows is essential. Since last few years, limit violation of voltage and line loading has been responsible for undesirable incidents of power system collapse leading to partial or even complete blackouts. Accurate prediction and alleviation of line overloads is the suitable corrective action to avoid network collapse. The control action strategies to limit the transmission line loading to the security limits are generation rescheduling/load shedding. In this paper, an intelligent technique based on cascade neural network (CNN) is presented for identification of the overloaded transmission lines in a power system and for prediction of overloading amount in the identified overloaded lines. The effectiveness of the proposed CNN based approach is demonstrated by identification and prediction of line overloading for different generation/loading conditions in IEEE 14-bus system. Once the cascade neural network is trained properly, it provides accurate and quick results for previously unseen loading scenarios during testing phase. # 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

Current Directional Protection of Series Compensated Line Using Intelligent Classifier

Current inversion condition leads to incorrect operation of current based directional relay in power system with series compensated device. Application of the intelligent system for fault direction classification has been suggested in this paper. A new current directional protection scheme based on intelligent classifier is proposed for the series compensated line. The proposed classifier uses ...

متن کامل

Modeling of Gas Hydrate Formation in the Presence of Inhibitors by Intelligent Systems

Gas hydrate formation in production and transmission pipelines and consequent plugging of these lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. Gas hydrate formation rate is one of the most important topics related to the kinetics of the process of gas hydrate crystallization. The main purpose of this study is investigating phenomenon of gas hyd...

متن کامل

Modeling of Gas Hydrate Formation in the Presence of Inhibitors by Intelligent Systems

Gas hydrate formation in production and transmission pipelines and consequent plugging of these lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. Gas hydrate formation rate is one of the most important topics related to the kinetics of the process of gas hydrate crystallization. The main purpose of this study is investigating phenomenon of gas hyd...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008